Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The options for Artificial intelligence (AI) tools used in teacher education are increasing daily, but more is only sometimes better for teachers working in already complex classroom settings. This team discusses the increase of AI in schools and provides an example from administrators, teacher educators, and computer scientists of an AI virtual agent and the research to support student learning and teachers in classroom settings. The authors discuss the creation and potential of virtual characters in elementary classrooms, combined with biometrics and facial emotional recognition, which in this study has impacted student learning and offered support to the teacher. The researchers share the development of the AI agent, the lessons learned, the integration of biometrics and facial tracking, and how teachers use this emerging form of AI both in classroom-based center activities and to support students’ emotional regulation. The authors conclude by describing the application of this type of support in teacher preparation programs and a vision of the future of using AI agents in instruction.more » « less
-
Recognizing the affective state of children with autism spectrum disorder (ASD) in real-world settings poses challenges due to the varying head poses, illumination levels, occlusion and a lack of datasets annotated with emotions in in-the-wild scenarios. Understanding the emotional state of children with ASD is crucial for providing personalized interventions and support. Existing methods often rely on controlled lab environments, limiting their applicability to real-world scenarios. Hence, a framework that enables the recognition of affective states in children with ASD in uncontrolled settings is needed. This paper presents a framework for recognizing the affective state of children with ASD in an in-the-wild setting using heart rate (HR) information. More specifically, an algorithm is developed that can classify a participant’s emotion as positive, negative, or neutral by analyzing the heart rate signal acquired from a smartwatch. The heart rate data are obtained in real time using a smartwatch application while the child learns to code a robot and interacts with an avatar. The avatar assists the child in developing communication skills and programming the robot. In this paper, we also present a semi-automated annotation technique based on facial expression recognition for the heart rate data. The HR signal is analyzed to extract features that capture the emotional state of the child. Additionally, in this paper, the performance of a raw HR-signal-based emotion classification algorithm is compared with a classification approach based on features extracted from HR signals using discrete wavelet transform (DWT). The experimental results demonstrate that the proposed method achieves comparable performance to state-of-the-art HR-based emotion recognition techniques, despite being conducted in an uncontrolled setting rather than a controlled lab environment. The framework presented in this paper contributes to the real-world affect analysis of children with ASD using HR information. By enabling emotion recognition in uncontrolled settings, this approach has the potential to improve the monitoring and understanding of the emotional well-being of children with ASD in their daily lives.more » « less
-
Many studies have demonstrated the usefulness of virtual characters in educational settings; however, widespread adoption of such tools is limited by development costs and accessibility. This article describes a novel platform Web Automated Virtual Environment (WAVE) to deliver virtual experiences through the web. The system integrates data acquired from a variety of sources in a manner that allows the virtual characters to exhibit behaviors that are appropriate to the designer’s goals, such as providing support for users based on understanding their activities and their emotional states. Our WAVE platform overcomes the challenge of the scalability of the human-in-the-loop model by employing a web-based system and triggering automated character behavior. Therefore, we plan to make WAVE freely accessible (part of the Open Education Resources) and available anytime, anywhere.more » « less
-
The authors present the design and implementation of an exploratory virtual learning environment that assists children with autism (ASD) in learning science, technology, engineering, and mathematics (STEM) skills along with improving social-emotional and communication skills. The primary contribution of this exploratory research is how educational research informs technological advances in triggering a virtual AI companion (AIC) for children in need of social-emotional and communication skills development. The AIC adapts to students’ varying levels of needed support. This project began by using puppetry control (human-in-the-loop) of the AIC, assisting students with ASD in learning basic coding, practicing their social skills with the AIC, and attaining emotional recognition and regulation skills for effective communication and learning. The student is given the challenge to program a robot, Dash™, to move in a square. Based on observed behaviors, the puppeteer controls the virtual agent’s actions to support the student in coding the robot. The virtual agent’s actions that inform the development of the AIC include speech, facial expressions, gestures, respiration, and heart color changes coded to indicate emotional state. The paper provides exploratory findings of the first 2 years of this 5-year scaling-up research study. The outcomes discussed align with a common approach of research design used for students with disabilities, called single case study research. This type of design does not involve random control trial research; instead, the student acts as her or his own control subject. Students with ASD have substantial individual differences in their social skill deficits, behaviors, communications, and learning needs, which vary greatly from the norm and from other individuals identified with this disability. Therefore, findings are reported as changes within subjects instead of across subjects. While these exploratory observations serve as a basis for longer term research on a larger population, this paper focuses less on student learning and more on evolving technology in AIC and supporting students with ASD in STEM environments.more » « less
An official website of the United States government
